STEREOSELECTIVE SYNTHESIS OF ALLYLSILANES FROM CHLOROMETHYLSILYLALKYNES

Hiroshi Shiragami, Takuo Kawamoto, Kiitiro Utimoto*, and Hitosi Nozaki

Department of Industrial Chemistry, Kyoto University,

Yoshida, Kyoto, 606, Japan

Abstract - Regio- and stereoselective hydralumination of 1-chloromethyldimethylsilyl-1-alkyne with DIBAH affords (Z)-1-chloromethyldimethylsilyl-1-diisobutylalumino-1-alkene which gives (E)-1-trimethylsilyl-2-alkene as a sole product by successive treatment with 3 equiv of methyllithium and water. Reaction of the organoaluminium intermediate with trimethyl-aluminium in refluxing heptane produces a mixture of (Z)- and (E)-1-trimethylsilyl-2-alkene.

Allylsilanes have attracted considerable attention as versatile synthetic reagents. 1,2,3 In connection with the stereocontrolled preparation of 1-alkenylsilanes from 1-alkynes, 4,5,6 stereoselective synthesis of allylsilanes bearing metallic substituent on β -carbon has been examined. Preparation of the target molecule could be conceivable from 1-chloromethyldimethylsilyl-1-alkyne by hydralumination followed by the action of organometallic reagent. Hydrolytic work up of the product would give (E)- and (Z)-allylsilanes. This paper describes selective formation of (E)-1-trimethylsilyl-2-alkenes from 1-chloromethyldimethylsilyl-1-alkynes by successive treatment with DIBAH, methyllithium, and dil. hydrochloric acid. A mixture of (Z)- and (E)-allyl-silanes is produced by the action of trimethylaluminium, in place of methyl-lithium.

Hydralumination of 1-trimethylsilyl-1-alkyne with DIBAH has been reported to give pure cis-adduct in hydrocarbon-ether and a mixture of cis- and transadducts in hydrocarbon. When trimethylsilyl group is substituted with chloromethyldimethylsilyl, stereoselective formation of cis-adduct could be expected even in hydrocarbon by intramolecular interaction of chlorine to aluminium.

The starting material $\underline{1}$ was easily obtained from 1-alkyne by the action of chloromethyldimethylsilyl chloride. A heptane solution of $\underline{1}$ (R^1 = n- C_6H_{13}) was treated with DIBAH at room temperature. Hydrolytic work up of the reaction mixture gave pure (Z)-1-chloromethyldimethylsilyl-1-octene ($\underline{3}$, R^1 = n- C_6H_{13} , R^2 = H) almost quantitatively. Hydralumination in heptane-ether also afforded (Z)-isomer after hydrolytic work up. Treatment of the hydraluminated product with D_2 O gave 1-deuterated alkenylsilane $\underline{3}$ (R^1 = n- C_6H_{13} , R^2 = D). These results indicated that the addition of DIBAH to $\underline{1}$ was regio- and stereoselective to produce $\underline{2}$ and that the stereochemistry of the adduct $\underline{2}$ was not disturbed during the reaction at room temperature.

The reaction mixture containing $\underline{2}$ (R¹ = n-C₆H₁₃) was treated with methyllithium (3 equiv, ether solution) at room temperature for 2 h. 9 Hydrolytic work up of the reaction mixture afforded (E)-1-trimethylsilyl-2-nonene ($\underline{4}$, R = n-C₆H₁₃, purity >99%) selectively. Work up with D₂O gave the deuterated product $\underline{5}$ (R¹ = n-C₆H₁₃). Results are summarized in Table 1 (entry 1 - 6).

Selective formation of (E)-allylsilane $\underline{4}$ from $\underline{2}$ by the action of methyllithium can be explained by the assumption of selective formation of (E)-1-chloromethyldimethylsilyl-l-lithio-l-octene ($\underline{6}$, R^1 = n-C $_6H_{13}$) from $\underline{2}$ (R^1 = n-C $_6H_{13}$) by the action of 2 equiv of MeLi. Reaction of methyllithium to the above lithiated alkenylsilane $\underline{6}$ (R^1 = n-C $_6H_{13}$) produced lithiated allylsilane $\underline{7}$ (R^1 = n-C $_6H_{13}$) by stereospecific migration of methylene.

In contrast to the above case, treatment of a heptane solution of $\underline{2}$ (R^1 = n- C_6H_{13}) with trimethylaluminium (1.1 equiv) at 98°C afforded a mixture of (E)-and (Z)-1-trimethylsilyl-2-nonene ($\underline{4}$, E/Z = 30/70). Ratio of E/Z depended upon the reaction conditions. Hydralumination of $\underline{1}$ (R^1 = n- C_6H_{13}) in heptane at room temperature for 30 min followed by the action of trimethylaluminium at 70°C for 3 h gave (E)-isomer as the major product ($\underline{4}$, E/Z = 70/30). Use of triethylaluminium, in place of trimethylaluminium, afforded (Z)-isomer predominantly (Table 1, entry 11). Work up with D_2 O gave deuterated product whose formation indicated that the aluminium moiety was still alive on olefin carbon after migration of methylene.

Rearrangement induced by trialkylaluminium could be explained: (1) geometry of 2 gradually changed to (E)-isomer at elevated temperature in heptane; (2) rearrangement of chloromethylsilylalkene into allylsilane occurs stereospecifically, (3) geometry of the rearranged product does not change under the applied reaction conditions.

Table 1.	Allylsilanes	from	l-Chloromethyldimethylsilyl-l-alkynes	(1)
----------	--------------	------	---------------------------------------	-----

Entr	y R ¹		netal Lv)	Reaction solvent			Work up		oduct (yield %, E/Z)
1	n-C6 ^H 13	MeLi	(3)	Et ₂ O	r.t.	2 h	н ₂ о	4	(82, E only) ^a
2	"	"		"	"	"	D ₂ O	<u>5</u>	(80, E only)
3	11	If		"	0°C	**	н ₂ 0	<u>3</u>	(90, Z only)
4	11	BuLi	(3)	hexane	r.t.	**		<u>1</u>	(94) ^b
5	n-C ₄ H ₉	MeLi	(3)	Et ₂ 0	17	11	н ₂ о	4	(80, E only)
6	Ph	n		11	"	l day	11	4	(73, 21/79) ^c
7	n-C ₆ H ₁₃	Me ₃ Al	(1.1)	heptane	98°C	3 h	H ₂ O	4	(70, 30/70)
8	11	"		11	II	11	D ₂ O	<u>5</u>	(74, 30/70)
9	u	n		11	II	11	н ₂ о	4	(75, 85/15) ^d
10	11	"		H	70°C	"	19	4	(80, 70/30)
11	**	Et ₃ Al	(1.1)	п	98°C	11	11	10	(83, 10/90, R ³ =Et)
12	$n-C_4H_9$	Me ₃ Al	(1.1)	H	н	11	11	4	(75, 30/70)
13	Ph	"		11	n	8 h	п	4	(85, 68/32) ^e
14	n-C ₆ H ₁₃	{iBu ₃ A	A1 (2.	0), hepta	ne, 98	°C, 3 h	to <u>2</u> } f	<u>10</u>	$(74, 5/95, R^3 = ^{1}Bu)$

Typical procedure: To a heptane solution of DIBAH (2.3 mmol, 1.8 mL of 1.28 M solution), $\underline{1}$ (2.3 mmol) was added and the resulting mixture was stirred for 1 h at room temperature. The reaction mixture was treated with methyllithium (7.0 mmol, 3.2 mL of 2.2 M ethereal solution) at 0°C. The whole was stirred for 2 h at room temperature, poured onto dil. HCl and crushed ice, and extracted with ether. Washing (brine), drying (Na₂SO₄), and concentration of the ethereal extract afforded $\underline{4}$, which was analyzed by glc cnd 200 MHz 1 H-nmr.

b Hydralumination product 2 was treated with BuLi in hexane affording retrohydraluminated product, namely, the starting material 1.

In the case of R^1 = Ph, transmetallation giving 6 from 2 seems slow. Treatment of 2 with MeLi at room temperature for 2 h afforded vinylsilane 3 (R^1 = Ph, R^2 = H, containing 23% of E-isomer) as the major product after hydrolytic work up. Allylsilane 7 and 9 (or the corresponding aluminium ate complex) are seemed to be produced by the attack of MeLi to chloromethylsilyl group on both 6 and 2 (or the corresponding ate complex).

d Hydralumination at 50°C for 5 h and successive treatment with Me₃Al.

Predominant formation of E-isomer is responsible for the fast isomerization of $\underline{2}$ into $\underline{8}$ when R^1 = Ph (ref. 8).

f Direct treatment of chloromethylsilylalkyne <u>l</u> with 1 Bu₃Al (2.0 equiv) gave $\frac{10}{10}$ (R³ = 1 Bu₃, whose formation could be explained that hydralumination proceeded with 1 Bu₃Al.

$$\begin{bmatrix} 2 & \xrightarrow{R^1} & \text{Al}^{\dot{1}} \text{Bu}_2 \\ & & \text{SiMe}_2 \text{CH}_2 \text{Cl} \end{bmatrix} \xrightarrow{R^3 3^{\text{Al}}} & \text{R}^1 \text{CH} = \text{C} & \text{Al}^{\dot{1}} \text{Bu}_2 \\ & & \text{CH}_2 \text{SiMe}_2 \text{R}^3 & \text{CH}_2 \text{SiMe}_2 \text{R}^3 \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & &$$

When (Z)-1-chloromethyldimethylsilyl-1-octene ($\underline{3}$, R^1 = n-C₆H₁₃, R^2 = H) was treated with methyllithium under the above described reaction conditions, $\underline{3}$ was recovered. Synthetic utilities of the metallic functionality are under investigation.

Acknowledgement. The finantial supports by the Grant-in-Aid for Scientific Research (59470081, 60219015) from the Ministry of Education, Science, and Culture as well as the Asahi Glass Foundation for Industrial Technology are deeply appreciated.

REFERENCES

- 1. E. Colvin, "Silicon in Organic Synthesis", pp. 97-124, Butterworths, London, 1981.
- 2. H. Sakurai, Pure Appl. Chem., 54, 1 (1982).
- W. P. Weber, "Silicon Reagents for Organic Synthesis", pp. 173-205, Springer-Verlag, Berlin, 1983.
- 4. K. Uchida, K. Utimoto, and H. Nozaki, J. Org. Chem., 41, 2215 (1976).
- 5. M. Obayashi, K. Utimoto, and H. Nozaki, Tetrahedron Lett., 1805 (1977).
- 6. K. Uchida, K. Utimoto, and H. Nozaki, Tetrahedron, 33, 2987 (1977).
- 7. AllyIsilane bearing magnesium moiety on β -carbon was first reported: H. Nishiyama, H. Yokoyama, S. Narimatsu, and K. Itoh, Tetrahedron Lett., 23, 1267 (1982).
- 8. J. J. Eisch and G. A. Damasevitz, J. Org. Chem., 41, 2214 (1976).
- 9. Reaction at 0°C did not give any allylsilane (Table 1, entry 3). Reaction with BuLi in hexane produced retro-hydraluminated material 2.
- 10. Selective formation of thermodynamically stable (E)-1-trimethylsilyl-1-lithio-1-alkenes has been observed: G. Zweifel, R. E. Murray, and H. P. On, J. Org. Chem., 46, 1292 (1981).
- 11. Aluminium chloride-catalyzed rearrangement of chloromethylsilylalkenes into allylsilanes and cyclopropylsilanes has been reported: K. Tamao, T. Nakajima, and M. Kumada, Organometallics, 3, 1655 (1984).
- L. R. Robinson, G. T. Burns, and T. J. Barton, J. Am. Chem. Soc., <u>107</u>, 3935 (1985) and references cited therein.
- 13. Methoxide promoted rearrangement of chloromethylsilanes has appeared:
 E. A. Sans and H. Shechter, Tetrahedron Lett., <u>26</u>, 1119 (1985).
 (Received in Japan 2 November 1985)