STEREOSELECTIVE SYNTHESIS OF ALLYLSILANES FROM CHLOROMETHYLSILYLALKYNES

Hiroshi Shiragami, Takuo Kawamoto, Kiitiro Utimoto*, and Hitosi Nozaki

Department of Industrial Chemistry, Kyoto Univeristy,

Yoshida, Kyoto, 606, Japan

Abstract - Regio- and stereoselective hydralumination of 1chloromethyldimethylsilyl-1-alkyne with DIBAH affords (Z)-1chloromethyldimethylsilyl-1-diisobutylalumino-1-alkene which gives (E)-1-trimethylsilyl-2-alkene as a sole product by successive treatment with 3 equiv of methyllithium and water. Reaction of the organoaluminium intermediate with trimethylaluminium in refluxing heptane produces a mixture of (Z)- and (E) -l-trimethylsilyl-2-alkene.

Allylsilanes have attracted considerable attention as versatile synthetic reagents. $1, 2, 3$ In connection with the stereocontrolled preparation of 1alkenylsilanes from 1-alkynes, $4,5,6$ stereoselective synthesis of allylsilanes bearing metallic substituent on β -carbon has been examined.⁷ Preparation of the target molecule could be conceivable from 1-chloromethyldimethylsily1-1alkyne by hydralumination followed by the action of organometallic reagent. Hydrolytic work up of the product would give (E)- and (Z)-allylsilanes. This paper describes selective formation of (E)-1-trimethylsilyl-2-alkenes from 1-chloromethyldimethylsilyl-1-alkynes by successive treatment with DIBAH, methyllithium, and dil. hydrochloric acid. A mixture of (Z)- and (E)-allylsilanes is produced by the action of trimethylaluminium, in place of methyllithium.

589

Hydralumination of l-trimethylsilyl-1-alkyne with DIBAH has been reported to give pure cis-adduct in hydrocarbon-ether and a mixture of cis- and transadducts in hydrocarbon. $4,8$ When trimethylsilyl group is substituted with chloromethyldimethylsilyl, stereoselective formation of cis-adduct could be expected even in hydrocarbon by intramolecular interaction of chlorine to aluminium.

The starting material 1 was easily obtained from 1-alkyne by the action of chloromethyldimethylsilyl chloride. A heptane solution of $\underline{1}$ ($R^1 = n - C_6H_{1,3}$) was treated with DIBAH at room temperature. Hydrolytic work up of the reaction mixture gave pure (Z)-1-chloromethyldimethylsily1-1-octene (3, $R^1 = n - C_E H_{1,2}$, R^2 = H) almost quantitatively. Hydralumination in heptane-ether also afforded (Z)-isomer after hydrolytic work up. Treatment of the hydraluminated product with D₂O gave 1-deuterated alkenylsilane 3 (R¹ = n-C₆H₁₃, R² = D). These results indicated that the addition of DIBAH to 1 was regio- and stereoselective to produce 2 and that the stereochemistry of the adduct 2 was not disturbed during the reaction at room temperature.

The reaction mixture containing $2(R^1 = n - C_6H_{13})$ was treated with methyllithium (3 equiv, ether solution) at room temperature for 2 h.⁹ Hydrolytic work up of the reaction mixture afforded (E)-1-trimethylsilyl-2-nonene (4, R = n-C₆H₁₃, purity >99%) selectively. Work up with D₂O gave the deuterated product $\frac{5}{5}$ (R¹ = n-C₆H₁₃). Results are summarized in Table 1 (entry 1 - 6).

Selective formation of (E) -allylsilane 4 from 2 by the action of methyllithium can be explained by the assumption of selective formation of (E)-lchloromethyldimethylsilyl-1-lithio-1-octene (6, R⁺ = n-C₆H₁₃) from <u>2</u> (R⁺ = n-C₆H₁₃) by the action of 2 equiv of MeLi." Reaction of methyllithium to the above lithiated alkenylsilane 6 (R^1 = n- $C_\epsilon H_{13}$) produced lithiated allylsilane $\overline{1}$ (\overline{R}^1 = n-C₆H₁₃) by stereospecific migration of methylene.

In contrast to the above case, treatment of a heptane solution of $2(R^1 =$ n-C₆H₁₃) with trimethylaluminium (1.1 equiv) at 98°C afforded a mixture of (E)and (2) -1-trimethylsilyl-2-nonene $(4, E/Z = 30/70)$. Ratio of E/Z depended upon the reaction conditions. Hydralumination of $\frac{1}{n}$ (R¹ = n-C₆H₁₃) in heptane at room temperature for 30 min followed by the action of trimethylaluminium at 70°C for 3 h gave (E)-isomer as the major product $(4, E/Z = 70/30)$. Use of triethylaluminium, in place of trimethylaluminium, afforded (Z)-isomer predominantly (Table 1, entry 11). Work up with D_0 gave deuterated product whose formation indicated that the aluminium moiety was still alive on olefin carbon after migration of methylene.

Rearrangement induced by trialkylaluminium could be explained: (1) geometry of 2 gradually changed to (E)-isomer at elevated temperature in heptane; (2) rearrangement of chloromethylsilylalkene into allylailane occurs stereospecifically, (3) geometry of the rearranged product does not change under the applied reaction conditions.

Entry	R^1	Alkylmetal	(equiv)	Reaction Conditions solvent temp.		time	Work up	Product (yield ℓ , E/Z)
ı				$n - C_6H_{13}$ MeLi (3) Et ₂ 0 r.t. 2 h			H_2O	$\frac{4}{5}$ (82, E only) ^a
$\overline{2}$	$\pmb{\mathfrak{m}}$	\mathbf{H}		$\pmb{\mathfrak{m}}$	$\pmb{\mathsf{u}}$	$\pmb{\pi}$	$D_{2}O$	5(80, E only)
3	$\,$ 11 $\,$	\mathbf{u}		\pmb{u}	$0^{\circ}C$	$\pmb{\mathsf{u}}$	H_2O	3(90, 2 only)
4	\mathbf{u}_c			BuLi (3) hexane r.t.		Ħ	\rightarrow	1 $(94)^{b}$
5	$n - C_4H_Q$			MeLi (3) $Et2O$	$\mathcal{L}_{\rm{max}}$. Hence,	\mathbf{u}	H_2O	4 (80, E only)
6	${\tt Ph}$	\mathbf{R}		\mathbf{n}	\mathbf{u}_\perp	1 day	~ 0	4 (73, 21/79) ^c
7				$n - C_6H_{13}$ Me ₃ Al (1.1) heptane 98°C 3 h			H_2O	4 (70, 30/70)
8	$\pmb{\mathfrak{m}}$			Ħ	\mathbf{H}^{\prime}	\mathbf{u}	D_2O	5(74, 30/70)
9	$\pmb{\mathfrak{m}}$	n,		$\pmb{\pi}$	\mathbf{H} .	Ħ	H_2O	4 (75, 85/15) ^d
10	$\pmb{\mathsf{u}}$	$\pmb{\mathfrak{m}}$		$\pmb{\mathsf{H}}$	70° C	\pmb{u}	\mathbf{H}	4(80, 70/30)
11		" $Et_3Al(1.1)$		n,	98° C	$\pmb{\mathfrak{m}}$	$\pmb{\mathfrak{m}}$	10 (83, 10/90, $R^3 = Et$)
$12 \,$	$n - C_A H_Q$ Me ₃ Al (1.1)				\mathbf{H} .	$\pmb{\mathsf{u}}$	8	4(75, 30/70)
13	${\tt Ph}$	~ 100		$\pmb{\mathfrak{m}}$	\mathbf{u}	8 h	$\sim 10^{\circ}$	4 (85, 68/32) ^e
14				$n - C_6 H_{13}$ $\{^1Bu_3Al$ (2.0), heptane, 98°C, 3 h to 2} ^f				10 (74, 5/95, $R^3 = i$ Bu)

Table 1. Allylsilanes from l-Chloromethyldimethylsilyl-l-alkynes (1)

- a Typical procedure: To a heptane solution of DIBAH (2.3 mmol, 1.8 mL of 1.28 M solution), 1 (2.3 mmol) was added and the resulting mixture was stirred for 1 h at room temperature. The reaction mixture was treated with methyllithium (7.0 mmol, 3.2 mL of 2.2 M ethereal solution) at 0° C. The whole was stirred for 2 h at room temperature, poured onto dil. HCl and crushed ice, and extracted with ether. Washing (brine), drying (Na₂SO₄), and concentration of the ethereal extract afforded 4, which was analyzed by glc cnd 200 MHz 1 H-nmr.
- Hydralumination product 2 was treated with BuLi in hexane affording retrohydraluminated product, namely, the starting material 1.
- In the case of \texttt{R}^1 = Ph, transmetallation giving $\underline{6}$ from 2 seems slow. Treatment of 2 with MeLi at room temperature for 2 h afforded vinylsilane 3 (R¹ = Ph, $R^2 = H$, containing 23% of E-isomer) as the major product after hydrolytic work up. Allylsilane 7 and 9 (or the corresponding aluminium ate complex) are seemed to be produced by the attack of MeLi to chloromethylsilyl group on both 6 and 2 (or the corresponding ate complex).

Hydralumination at 50°C for 5 h and successive treatment with $Me₃Al$.

- Predominant formation of E-isomer is responsible for the fast isomerization of 2 into 8 when R^1 = Ph (ref. 8).
- Direct treatment of chloromethylsilylalkyne 1 with ¹Bu₃Al (2.0 equiv) gave 10 (R^3 = 1Bu), whose formation could be explained that hydralumination proceeded with $\frac{1}{2}Bu_{3}Al.$

When (Z)-l-chloromethyldimethylsilyl-l-octene (3, $R^1 = n - C_6H_{13}$, $R^2 = H$) was treated with methyllithium under the above described reaction conditions, 3 was recovered. $11,12,13$ Synthetic utilities of the metallic functionality are under investigation.

Acknowledgement. The finantial supports by the Grant-in-Aid for Scientific Research (59470081, 60219015) from the Ministry of Education, Science, and Culture as well as the Asahi Glass Foundation for Industrial Technology are deeply appreciated.

REFERENCES

- 1. E. Colvin, "Silicon in Organic Synthesis", pp. 97-124, Butterworths, London, 1981.
- 2. H. Sakurai, Pure Appl. Chem., <u>54</u>, 1 (1982).
- 3. W. P. Weber, "Silicon Reagents for Organic Synthesis", pp. 173-205, Springer-Verlag, Berlin, 1983.
- 4. K. Uchida, K. Utimoto, and H. Nozaki, J. Org. Chem., 41, 2215 (1976).
- 5. M. Obayashi, K. Utimoto, and H. Nozaki, Tetrahedron Lett., 1805 (1977).
- 6. K. Uchida, K. Utimoto, and H. Nozaki, Tetrahedron, <u>33</u>, 2987 (1977).
- 7. Allylsilane bearing magnesium moiety on β -carbon was first reported: H. Nishiyama, H. Yokoyama, S. Narimatsu, and K. Itoh, Tetrahedron Lett., 12, 1267 (1982).
- 8. J. J. Eisch and G. A. Damasevitz, J. Org. Chem., <u>41</u>, 2214 (1976).
- 9. Reaction at O'C did not give any allylsilane (Table 1, entry 3). Reaction with BuLi in hexane produced retro-hydraluminated material 2.
- 10. Selective formation of thermodynamically stable (E)-l-trimethylsilyl-llithio-1-alkenes has been observed: G. Zweifel, R. E. Murray, and H. P. On, J. Org. Chem., 3, 1292 (1981).
- 11. Aluminium chloride-catalyzed rearrangement of chloromethylsilylalkenes into allylsilanes and cyclopropylsilanes has been reported: K. Tamao, T. Nakajima, and M. Kumada, Organometallics, $\frac{3}{2}$, 1655 (1984).
- 12. L. R. Robinson, G. T. Burns, and T. J. Barton, J. Am. Chem. Soc., 107, 3935 (1985) and references cited therein.
- 13. Methoxide promoted rearrangement of chloromethylsilanes has appeared: E. A. Sans and H. Shechter, Tetrahedron Lett., 26, 1119 (1985). (Received in Japan 2 November 1985)